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A technique is described for the numerical solution of non-axisymmetric flow problems 
posed in cylindrical coordinates when the z-axis is included in the flowfield. The highlight 
of the technique is the manner in which the singularities at the centerline are handled. 
Specifically, the governing flowfield equations at r = 0 are put in a special form by applying 
L’Hospital’s Rule. TBe required radial derivatives are evaluated using a one-sided, second- 
order accurate, first-difference. This leads to a smooth, convergent calculation of the flow- 
field at the centerline. This appears to be the first generally applicable numerical method 
for avoiding coordinate system singularites in the context of a finite-difference scheme, 
and could have application to many non-axisymmetric flows. The technique is illustrated 
by specific results for the time-dependent flowfield inside an internal combustion engine. 

1. INTRODUCTION 

The computational technique described here was developed in the course of efforts 
by the present authors [l, 2,3] and R. Diwakar [3,4, 51 to obtain numerical solutions 
for the flowfield in an internal combustion reciprocating engine. The work of 
References [2] and [3] was in part concerned with obtaining solutions for the parti- 
cular three-dimensional model of Figure 1, which shows a model of the valve and 
cylinder arrangement used in a spark-ignition internal combustion engine. This 
geometrical model is most conveniently represented in cylindrical coordinates, as 
shown. Note that points on the z-axis are part of the flowfield and hence must be 
computed by whatever numerical algorithm is used. However, the z-axis is a singular 
line in the cylindrical coordinate system, because the value of the azimuthal coordinate 
4 is undefined along this line. Thus any flowfield variable which is a function of the 
coordinates (r, #I, z) will be mathematically undefined along the centerline, and may 
in fact be multivalued. The singularity at the centerline is easily recognized because 
the terms in the governing fluid mechanical equations containing (l/r) are undefined 
at r = 0. For axisymmetric flow, symmetry conditions at the centerline allow a 
straightforward calculation on the z-axis. Such is not the case for non-axisymmetic 
flows. This paper describes what is thought to be the first generally applicable method 
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for avoiding the coordinate system singularities associated with the numerical 
solution of non-axisymmetric problems in cylindrical coordinates. 

Emphasis in the present paper focuses on the technique of solution, which is quite 
general. The results specifically obtained for the I. C. engine application are presented 
in References [2] and [3]. A cursory description of the physical model will therefore 
suffice. Figures 1 and 2 depict the geometrical arrangement and grid-point speci- 
fication for this model. The imposed motion of the piston in the cylinder is sinusoidal. 
The valves are assumed to be unobstructed ports which open and close instantaneously 
at the proper times during the four-stroke cycle. Ten z-planes (see Figure 2) were used 
in the work reported here. 

2. GOVERNING EQUATIONS AND NUMERICAL METHOD 

Since the present work deals mainly with the difficulties inherent in the numerical 
analysis of three-dimensional flowfields in cylindrical coordinates, the working fluid 
(air) is treated for simplicity as a single component calorically-perfect gas. An inviscid 
fluid is assumed, but it is emphasized that the method discussed here in no way requires 
such an assumption. For this case, the non-dimensional governing equations in 
cylindrical component form are 
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Equations (1) to (3) are the r, #, and z component equations for conservation of 
momentum. Equations (4) and (5) are the equations for mass and energy conservation. 
The factor of y appears in the non-dimensional forms because of the choice of reference 
velocity, 

VT = (yRT#/2 (6> 

for the system. Note that (u, v, W) are the (r, 4, z) velocity components, and that 
density has been eliminated in favor of temperature and pressure with the equation 
of state, 

p=pRT (7) 

in dimensional variables. 
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The numerical algorithm used in this work is the second-order, explicit, time- 
dependent finite-difference scheme due to MacCormack [6]. Again, however, the 
technique given here for the treatment of coordinate singularities is not dependent 
on the use of a particular algorithm. The integration step size, or time step, is bounded 
by the Courant-Friedrichs-Lewy (CFL) condition, 

A 
Ar=IV,+a 

where 

A = local grid spacing 
[ V [ = magnitude of local flow velocity 

a = local speed of sound 

Equation (8) was applied on each time step at all points in the flowfield and some 
multiple (usually .7) of the smallest value obtained used as the actual step size. 

Attempts to directly implement the numerical algorithm for equations (1) to (5) 
will encounter difficulty due to the indeterminacy of $ when r = 0. It is emphasized 
that this is due purely to the representation of the governing equations in a particular 
coordinate system. The flowfield itself is in no way singular along the centerline. 
As an example, the flow of a uniform stream of speed U in the +x direction is given by 

v = ui (9) 

at an arbitrary field point in Cartesian coordinates. At the same field point in cylindri- 
cal coordinates the representation is 

V =r^Ucos+--- JUsin4 =u(r,+)i+v(r,f$)t$ (10) 

which is clearly a function of the azimuthal coordinate $. This flow will have constant 
properties along any radial line from the origin, but at the origin, where the radial 
lines meet, the representation in cylindrical coordinates is necessarily multivalued. 

The technique described here for resolving the difficulty consists of applying 
L’Hospital’s Rule for indeterminate forms to equations (1) to (5). Although no formal 
argument is made to show that the cylindrical coordinate equations are actually 
indeterminate forms at r = 0, justification for this can be given on physical grounds. 
If the terms containing (l/r) do not combine to produce an indeterminate form, then 
the time derivatives of the flowfield quantities at the centerline will be infinite, a 
situation which is not allowed on physical grounds. 

Formal application of L’Hospital’s Rule to equations (1) to (5) yields: 
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(15) 

Considerable time was spent attempting to evaluate the limits found in the above 
equations; i.e., attempting to identify fixed limits for terms like a2p/ara$ [r=,, that 
would apply in the general case. No arguments could be constructed to show what 
such limits should be. The following approach was then adopted: 

1. There probably are no specific limits that should occur; the required terms 
may be both time and azimuth dependent. 

2. It is not necessary to know apriori what the limiting terms in the L’Hospital 
equations should be. That is, there is no way in a finite difference solution to obtain 
any information about any quantity more accurately than is inherent in the initially 
chosen grid resolution. Therefore, such terms as liiy a2p/ara+ can be correctly 
treated by replacing the limit expression with the best available finite difference. The 
required limits are then resolved to the accuracy of the grid spacing. 

These arguments allow a set of equations to be developed that seem to be consistent 
with the finite-difference approximations inherent in the overall scheme, yet are free 
of coordinate singularities. There is, however, another objection to the use of 
L’Hospital’s Rule in cases where the $-derivatives are not identically zero. In such 
cases centerline computations are performed at neighboring “points” in &space which 
are actually the same point (somewhere on the z-axis) in physical space. Since the 
arc length r A$ goes to zero at the centerline, it would appear that equation (8) 
would require a limiting time step of zero to guarantee stability, thus preventing the 
calculation from being advanced in time. However, despite these reservations, it 
was decided to implement equations (11) to (15) within the overall MacCormack 
algorithm. It was thought that the z-axis might be special in some unanticipated way 
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that would invalidate the apparent time-step limitation. This has been the case; 
the reason is not known. 

A further problem is that the region r < 0 does not exist, hence only forward 
differences can be used in the radial direction at the centerline. This was shown to 
cause some difficulty which was eliminated by using a second-order one-sided first- 
difference formula at the centerline in the radial direction. 

4. COMPUTATIONAL METHOD USING L'HOSPITAL'S RULE 

The computations for the “ring” of points at r = 0 are handled much the same as 
those at any other place in the flowfield, with the xception that different governing 
equations are used after the spatial differences are obtained, and a few extra cross- 
derivative terms are required. Prior to spatial differencing some conditions are imposed 
on the “ring” at r = 0, based on the physics of the flow at the centerline. The first 
condition is obtained by noticing that the multivalued nature of the flotield does 
not extend to pressure, temperature, and the z-component of velocity. Thus, prior 
to spatial differencing these values are averaged on the “ring” of constant z and varying 
4 at r = 0. The entire ring is then reset to the average value. The second condition 
derives from the fact that the true velocity vector through any point can have only 
one direction in physical space, and at the centerline lies in the (x, z) plane, since in 
our problem this is a symmetry plane through which there can be no mass flow. If 
the velocity vector at a given value of z has the value U,,, , then the u and u component 
values in cylindrical coordinates must be 

(17) 

It is emphasized that (16) and (17) hold exactly for the velocity distribution on the 
“ring”. To determine U,,, , one computes the average of all x-components of velocity 
on the “ring” using 

U(+, z) = u(r, 4, z) cos 4 - u(r, 4, z) sin 4 (18) 

to yield each x-component. This completes the special procedures used at the center- 
line. 

Note that use of the method, while made more convenient by the presence of a plane 
of symmetry, is not restricted to cases where one exists. Even if the flow as a whole has 
no plane of symmetry, it is still true that the velocity “field” at the centerline must have 
the form of equations (16) and (17), with the exception that “4” becomes “I$ - +,,I’, 
where &, denotes the angle of the velocity vector (now no longer 0 or 7~) in a given 
z-plane. The velocity field on the “ring” will be symmetrical about a line at angle 
C& in that z-plane, with 4, different on each plane. The value of & is found from 

V($, z) = u(r, 4,~) sin #J + u(r, 4,~) cos d, (19) 
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which gives the resultant velocity in the y-direction, and 

+0 = tan-l(V/U) (20) 

Equation (20) is valid for each choice of 4 yielding values of U and V from equations 
(18) and (19). It seems best to average the result obtained from the entire “ring” 
atr = 0. 

Since there is no region defined by r < 0, rearward radial differences cannot be 
obtained at the centerline. This results in first-order accuracy at the centerline when 
the normal MacCormack algorithm is applied. It was found necessary to alter the 
standard differencing scheme of Reference [6] by using the second-order one-sided 
first-difference approximation 

ag 
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for radial differencing at the centerline. 

6. RESULTS 

The main result of this paper is that the above-described finite-difference technique 
does in fact allow the stable computation of flowfield values at the centerline in 
cylindrical coordinates for non-axisymmetric problems. There are also quantitative 
results which show that the method produces accurate solutions. The accuracy can 
be verified by considering the indicator diagram of Figure 3 for a 3000 RPM engine 
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FIG. 1. Cylindrical engine model and coordinate system. 
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test using the geometry of Figs. 1. and 2. The governing equations implemented in 
this work are isentropic in nature, hence the computed results should follow an isen- 
tropic curve. The indicator diagram of Fig. 3 plots the pressure vs. specific volume 
(l/p) history at an arbitrary point in the flowfield throughout the four-stroke cal- 
culation. The solid line is the correct isentrope for the compression stroke (except 

FIG. 2. Top of cylinder from inside including grid layout. 

during the heat addition phase of the computation, when the internal fluid is shifted 
to a different isentrope), and the dots and circles show calculated values. It is seen that 
the computed results fall exactly on the isentrope during the compression stroke. 

An examination of the behavior of the computed results during the power stroke 
(following heat addition) demonstrates the need for second-order spatial accuracy 
in the centerline calculations. After heat-addition at the top of the compression stroke, 
the computed results should follow the isentrope associated with the new conditions 
throughout the rest of the cycle. However, it is seen that the calculation using first- 
order differencing (solid dots) at the centerline suffers a severe increase in entropy 
(loss of total pressure relative to the correct isentrope) before converging to a new 
isentrope for the remainder of the power stroke. When second-order accurate 
differencing in the radial direction at the centerline is used, the computed results 
(open circles) continue to follow the isentrope established after heating. 

The reason for the loss of total pressure is that, as shown in Fig. 4, severe and physi- 
cally unrealistic pressure gradients are established shortly after heat addition when 
first-order accurate differencing is used. The strong gradients produce an entropy 
increase through the action of an artificial viscosity term that is required to stabilize 
the calculation ([2], [3]). The requirement for an explicit artificial viscosity term exists 
for 3-D solutions in Cartesian coordinates also, hence is totally unrelated to the 
-coordinate-singularity problem. The artificial viscosity is of the same order as the 
truncation error in the method, and produces an effect only in the presence of strong 
gradients such as those set up by the unstable first-order accurate centerline calculation. 
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FIG. 3. Indicator diagram for cylindrical engine for 3000 RPM inviscid calculation vs isentropic 
law. 

When second-order differencing at the z-axis was implemented, the heat addition 
process failed to produce the strong gradients of Fig. 4. Instead, the pressure at a 
given time remained spatially constant within the cylinder to better than three signi- 
ficant digits, a result in agreement with the corresponding test case in Cartesian 
coordinates. 
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FIG. 4. Pressure distribution in radial direction with first-order differencing for crank angle of- 
360”, at z = 342. 
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7. CONCLUSIONS 

1. This paper has detailed a technique for calculating non-axisymmetric flows 
in cylindrical coordinates, a method believed to be the first of its kind for finite- 
difference methods. It has been demonstrated for a problem of current interest, and 
has been shown to provide verifiably exact results in certain cases. 

2. The technique has been applied to a problem whose physics dictate the 
existence of a plane of symmetry. However, it is shown that the use of the method 
does not depend on the existence of such a symmetry plane, and the appropriate 
computational technique is specified for the case where no plane of symmetry exists. 

3. The numerical approach developed here is applied within the context of 
a second-order, explicit, time-dependent finite-difference scheme of MacCormack [6]; 
however, there is nothing in the method which would seem to restrict it to a particular 
finite-difference scheme. 

4. Second-order accuracy in the spatial differencing at the centerline seems to be 
a requirement for the method. This is in contrast to other regions of the flowfield 
(such as the wall) where one-sided, first-order accurate differencing invariably suffices 
to yield a reasonable solution. The accuracy requirement is easily met through the 
use of a three-term, one-sided first-difference approximation for radial derivatives. 
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